DOI: 10.2478/auom-2020-0041 An. Şt. Univ. Ovidius Constanța

\$ sciendo **Vol. 28(3),2020, 193–216**

δ_{ss} -supplemented modules and rings

Burcu Nişancı Türkmen and Ergül Türkmen

Abstract

In this paper, we introduce the concept of δ_{ss} -supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δ_{ss} -supplemented as a left module if and only if $\frac{R}{Soc(_RR)}$ is semisimple and idempotents lift to $Soc(_RR)$ if and only if every left R-module is δ_{ss} -supplemented. We define projective δ_{ss} covers and prove the rings with the property that every (simple) module has a projective δ_{ss} -cover are δ_{ss} -supplemented. We also study on δ_{ss} supplement submodules.

1 Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary left modules. Let R be such a ring and M be an R-module. The notation $N \subseteq M$ means that N is a submodule of M. Soc(M) and Rad(M)will stand for the socle of M and the radical of M. Let M be a module. A submodule $L \subseteq M$ is said to be *essential* in M, denoted as $L \trianglelefteq M$, if $L \cap N \neq 0$ for every non-zero submodule $N \subseteq M$. A module M is called *singular* if $M \cong \frac{N}{L}$ for some module N and an essential submodule $L \trianglelefteq N$. As a dual to the notion of an essential submodule, a submodule $N \circ M$ is said to be *small* in M, denoted by $N \ll M$, if $M \neq N + K$ for every proper submodule K of M ([13, 19.1]). A non-zero module M is called *hollow* if every proper submodule of M is small in M, and it is called *local* if it is hollow and finitely generated.

Key Words: semisimple module, strongly δ -local module, δ_{ss} -supplemented module, left δ_{ss} -perfect ring, projective δ_{ss} -cover

²⁰¹⁰ Mathematics Subject Classification: Primary 16D10; 16D60 Secondary 16D99. Received: 08.10.2019. Accepted: 09.01.2020.

Accepted: 05.01.2020

Let M be a module and U, V be submodules of M. The submodule V is said to be *supplement* of U in M or U is said to have a *supplement* V in M if V is minimal with respect to M = U + V. It is well known that a submodule V of M is a supplement of U in M if and only if M = U + V and $U \cap V \ll V$. M is called *supplemented* if every submodule U of M has a supplement in M. A submodule U of M has *ample supplements* in M if every submodule L of M such that M = U + L contains a supplement of U in M. The module M is called *amply supplemented* if every submodule of M has ample supplements in M. Semisimple modules and hollow modules are (amply) supplemented ([13, 41]).

Zhou [15] generalizes small submodules to δ -small submodules of a module M as follows. A submodule $N \subseteq M$ is said to be δ -small in M and indicated by $N \ll_{\delta} M$ if $M \neq N + K$ for every proper submodule K of M with $\frac{M}{K}$ singular. It is clear that every small submodule or projective semisimple submodule of M is δ -small in M. By $\delta(M)$ we will denote the sum of all δ -small submodules of M as in [15, Lemma 1.5 (2)]. Since $\operatorname{Rad}(M)$ is the sum of all small submodules of M, it follows that $\operatorname{Rad}(M) \subseteq \delta(M)$ for a module M. For an arbitrary ring R, let $\delta(R) = \delta(RR)$.

Let M be a module. In [7], M is said to be δ -supplemented if every submodule U of M has a δ -supplement V in M, that is, M = U + V and $U \cap V \ll_{\delta} V$. The module M is called *amply* δ -supplemented if, whenever M =U + V, U has a δ -supplement $V' \subseteq V$. Clearly, every (amply) supplemented module is (amply) δ -supplemented. For characterizations of supplemented and δ -supplemented modules we refer to [1], [7] and [13].

In [6], the authors define ss-supplemented modules as a proper generalization of semisimple modules. A module M is said to be ss-supplemented if every submodule U of M has a supplement V in M such that $U \cap V$ is semisimple. They give in the same paper the structure of ss-supplemented modules. In particular, it is shown in [6, Theorem 41] that a ring R is semiperfect and $\operatorname{Rad}(R) \subseteq \operatorname{Soc}(RR)$ if and only if every left R-module is ss-supplemented if and only if $_RR$ is the finite sum of strongly local submodules. Here a module M is called strongly local if it is local and the radical is semisimple ([6]).

Motivated by these results, we introduce the concept of δ_{ss} -supplemented modules. In this paper, we study on δ_{ss} -supplemented modules and we obtain the various properties of these modules. We show that strongly δ -local (see below) modules are δ_{ss} -supplemented. Every direct sum of strongly δ -local modules and projective semisimple modules is coatomic. The class of δ_{ss} supplemented modules is closed under finite sums and factor modules. We prove that a module M with δ -small $\delta(M)$ is δ_{ss} -supplemented if and only if it δ -supplemented and $\delta(M) \subseteq Soc(M)$. We study on the rings with the property that every left module is δ_{ss} -supplemented and call these rings left δ_{ss} -perfect. We also show that a ring R is left δ_{ss} -perfect if and only if $_{R}R$ is δ_{ss} -supplemented if and only if $\frac{R}{Soc(_{R}R)}$ is semisimple and idempotents lift to $Soc(_{R}R)$ if and only if for any module every maximal submodule has a δ_{ss} -supplement in the module. We define projective δ_{ss} -covers and prove that a ring is left δ_{ss} -perfect if and only if every left module has a projective δ_{ss} -cover if and only if every semisimple left module has a projective δ_{ss} -cover if and only if every semisimple left module has a projective δ_{ss} -cover. We also study on δ_{ss} -supplement submodules.

The following lemma follows from [15, Lemma 1.2] and we will use it throughout the paper.

Lemma 1.1. Let M be a module. A submodule $N \subseteq M$ is δ -small in M if and only if whenever X + N = M there exists a projective semisimple submodule N' of N such that $X \oplus N' = M$.

It is obvious that a module M is projective semisimple if and only if $M \ll_{\delta} M$. A ring R is called *local* if $_{R}R$ (or R_{R}) is a local module.

Remark 1.2. Let R be a commutative domain (which is not field) or a local ring and M be a non-zero R-module. Suppose that a submodule N of M is δ -small in M. Let M = N + K for some submodule K of M. Then there exists a projective semisimple submodule N' of N such that $M = N' \oplus K$. By [12, Proposition 2.5], we get that N' = 0 and so K = M. It means that N is a small submodule of M.

2 Strongly δ -Local Modules

It is well known that M is local if and only if $\operatorname{Rad}(M) \ll M$ and $\operatorname{Rad}(M)$ is maximal. Using this characterization, δ -local modules are defined in [4]. A module M is called δ -local if $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is maximal. Maybe, it is expected that local modules are also δ -local. But unfortunately, it is not the case. Let S be a simple module. Since S is projective or singular, it is $\delta(S) = S$ or δ -local. It follows that a projective simple module is local but not δ -local.

As we have mentioned in the introduction, a module M is strongly local if it is local and $\operatorname{Rad}(M)$ is semisimple ([6]). Note that every simple module is strongly local.

We say that a module M strongly δ -local if it is δ -local and $\delta(M) \subseteq Soc(M)$. It is clear that every strongly δ -local module is δ -local but the converse is not true in general. For example, let M be the left \mathbb{Z} -module \mathbb{Z}_8 . Then M is δ -local but not strongly δ -local. Then we have the following implications on modules:

We start the next lemma which are taken from [15, Lemma 1.3 and Lemma 1.5]. Recall that a module M coatomic if every proper submodule of M is contained in a maximal submodule of M. Note that a coatomic module has small radical.

Lemma 2.1. Let M be a module.

- (1) For any submodules N and L of M, $N+L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.
- (2) If $K \ll_{\delta} M$ and $f : M \longrightarrow N$ is a homomorphism, then $f(K) \ll_{\delta} N$. In particular, if $M \subseteq N$, then $K \ll_{\delta} N$.
- (3) If $f: M \longrightarrow N$ is a homomorphism, then $f(\delta(M)) \subseteq \delta(N)$.
- (4) If $M = \bigoplus_{i \in I} M_i$, then $\delta(M) = \bigoplus_{i \in I} \delta(M_i)$.
- (5) If M is coatomic, then $\delta(M)$ is the unique largest δ -small submodule of M.

It is well known that every (strongly) local module is indecomposable. On the other hand, the following theorem gives a characterization of a semisimple module which is strongly δ -local. Firstly we need the following facts.

Lemma 2.2. Let M be a module and let N be a semisimple submodule of M such that $N \subseteq \delta(M)$. Then $N \ll_{\delta} M$.

Proof. Let K be a submodule such that M = N + K. Since N is semisimple, then there exists a semisimple submodule X of N such that $N = (N \cap K) \oplus X$. Therefore $M = [(N \cap K) \oplus X] + K = X \oplus K$.

Next we prove that X is projective. Let $X = \bigoplus_{i \in I} S_i$, where I is some index set and each S_i is simple. Since $X \subseteq N \subseteq \delta(M)$, by the modular law, we have $\delta(M) = \delta(M) \cap M = \delta(M) \cap (X \oplus K) = X \oplus (K \cap \delta(M)) = X \oplus \delta(K)$. Note that, by Lemma 2.1 (4), $\delta(M) = \delta(X) \oplus \delta(K)$. Therefore $X = \delta(X)$. Let $\pi_i : X \longrightarrow S_i$ be the canonical projection. It follows from Lemma 2.1 (3) that $S_i = \pi_i(X) = \pi_i(\delta(X)) \subseteq \delta(S_i)$ and so $\delta(S_i) = S_i$, for all $i \in I$. This implies that each S_i is projective for all $i \in I$. Then $X = \bigoplus_{i \in I} S_i$ is projective as the direct sum of projective submodules. Hence $N \ll_{\delta} M$.

Observe from Lemma 2.2 that a module M is strongly δ -local if and only if $\delta(M)$ is maximal and semisimple. It follows that a semisimple module is strongly δ -local if and only if $\delta(M)$ is maximal. The following result is a direct consequence of Lemma 2.2.

Corollary 2.3. Let M be a module. Then M is semisimple and $\delta(M) = M$ if and only if it is projective semisimple.

Theorem 2.4. Let M be a semisimple module. Then M is strongly δ -local if and only if M has the decomposition $M = M_1 \oplus M_2$, where M_1 is a projective semisimple submodule and M_2 is a singular simple submodule.

Proof. (\Longrightarrow) Let M be a strongly δ -local module. Since $\delta(M)$ is maximal and M is semisimple, there exists a simple submodule M_2 of M such that $M = \delta(M) \oplus M_2$. Put $M_1 = \delta(M)$. Since $M_1 = \delta(M) \ll_{\delta} M$, it follows from Lemma 2.1 (2) that $M_1 \ll_{\delta} M_1$ and so M_1 is semisimple projective by Corollary 2.3. Therefore $\delta(M_2) \subseteq \delta(M) \cap M_2 = 0$ and so $\delta(M_2) = 0$. It means that M_2 is singular. Hence we get the decomposition $M = M_1 \oplus M_2$ as desired.

(\Leftarrow) Clearly, $\delta(M_1) = M_1 \ll_{\delta} M_1$ and $\delta(M_2) = 0 \ll_{\delta} M$. It follows from Lemma 2.1 (2)-(4) that $\delta(M) = \delta(M_1) \oplus \delta(M_2) = M_1 \oplus 0$ is δ -small in M. Since $\delta(M)$ is maximal, we deduce that M is strongly δ -local.

Observe from Theorem 2.4 that any factor module (in particular, direct summand) of a strongly δ -local module need not be strongly δ -local in general.

Proposition 2.5. Let M be an indecomposable module. If M is strongly δ -local, then it is strongly local.

Proof. If M is simple, then it is singular simple because M is strongly δ -local. Suppose that M is not singular simple. Since M is indecomposable, we get that $Soc(M) \subseteq Rad(M)$. This implies that $Soc(M) \ll M$. Since M is strongly δ -local, we have $\delta(M) \subseteq Soc(M)$ and so $\delta(M) = Soc(M)$ is maximal. Therefore Soc(M) = Rad(M). Thus M is strongly local. \Box

Proposition 2.6. Let R be a local ring. If M is a strongly δ -local R-module, then it is a strongly local R-module.

Proof. By Remark 1.2.

Proposition 2.7. Let M be a module. Assume that $\frac{M}{\delta(M)}$ is semisimple. Then M is coatomic if and only if $\delta(M)$ is δ -small in M.

Proof. (\Longrightarrow) By Lemma 2.1 (5).

 $(\Leftarrow) \text{ If } \delta(M) = M \text{, then clearly } M \ll_{\delta} M \text{ and so } M \text{ is projective semisimple. Let } \delta(M) \neq M \text{ and let } U \text{ be any submodule of } M. \text{ If } U + \delta(M) = M \text{, then there exists a (projective) semisimple submodule } S \text{ of } \delta(M) \text{ such that } U \oplus S = M. \text{ Let } S = \bigoplus_{i \in I} S_i, \text{ where } (i \in I) S_i \text{ is simple and } I \text{ is some index set. For some } i_0 \in I, \text{ put } U' = U \oplus (\oplus_{i \in I \setminus \{i_0\}} S_i). \text{ Then clearly } U \subseteq U'. \text{ Therefore } \frac{M}{U'} \cong S_{i_0} \text{ and hence } U' \text{ is a maximal submodule of } M. \text{ Suppose that } U + \delta(M) \neq M. \text{ Then } \frac{U + \delta(M)}{\delta(M)} \text{ is a proper submodule of } \frac{M}{\delta(M)} \text{ such that } \frac{U + \delta(M)}{\delta(M)} \subseteq \frac{K}{\delta(M)}. \text{ So } K \text{ is a maximal submodule } M \text{ which contains } U. \text{ It means that } M \text{ is coatomic.} \square$

Recall that a module M is called *radical* if M has no maximal submodules, that is, M = Rad(M). Let P(M) be the sum of all radical submodules of M. It is easy to see that P(M) is the largest radical submodule of M. If P(M) = 0, M is called *reduced*.

Corollary 2.8. Any strongly δ -local module is reduced and coatomic.

Proof. Let M be a strongly δ -local module. Therefore $\delta(M) \subseteq Soc(M)$. Since $\operatorname{Rad}(M) \subseteq \delta(M)$, it follows that M is reduced. Since $\frac{M}{\delta(M)}$ is simple, we get M is coatomic by Proposition 2.7.

Theorem 2.9. Let $M = \bigoplus_{i \in I} M_i$, where each M_i is either strongly δ -local or projective semisimple. Then M is coatomic.

Proof. Note that $\frac{M}{\delta(M)} = \pi(M) \cong \bigoplus_{i \in I} \frac{M_i}{\delta(M_i)}$. Let $i_0 \in I$. If M_{i_0} is projective semisimple, then $\delta(M_{i_0}) = M_{i_0}$ and so the factor module $\frac{M_{i_0}}{\delta(M_{i_0})} = 0$. It follows that we can consider the module $\frac{M}{\delta(M)}$ is the direct sum of simple modules $\frac{M_k}{\delta(M_k)}$, where $(k \in \Lambda) M_k$ is strongly δ -local and $\Lambda \subseteq I$. Thus $\frac{M}{\delta(M)}$ is semisimple.

By Proposition 2.7, it is enough to prove that $\delta(M)$ is δ -small in M. By the hypothesis, we have $\delta(M_i) \subseteq Soc(M_i)$. Applying Lemma 2.1 (4) and [13, 21.2 (5)], we obtain that $\delta(M) = \bigoplus_{i \in I} \delta(M_i) \subseteq \bigoplus_{i \in I} Soc(M_i) = Soc(M)$. That is, $\delta(M)$ is semisimple. It follows from Lemma 2.2 that $\delta(M)$ is δ -small in M. This completes the proof.

3 δ_{ss} -Supplement Submodules

Let M be a module. By $Soc_s(M)$ we denote the sum of all simple submodules of M that are small in M as in [14]. Since every small submodule of M is δ -small in M, the notation motives us to introduction the sum all simple submodules of M that are δ -small in M. For a module M, let

$$Soc_{\delta}(M) = \sum \{ S \subseteq M \mid S \text{ is simple and } S \ll_{\delta} M \}.$$

The properties of $Soc_{\delta}(M)$ for a module M are given in the next proposition.

Proposition 3.1. Let R be a ring and M be a left R-module. Then:

- (1) $Soc_{\delta}(M) = Soc(M) \cap \delta(M),$
- (2) $Soc_{\delta}(M) \ll_{\delta} M$,
- (3) $Rad(Soc_{\delta}(M)) = 0$,
- (4) $Soc_{\delta}(M) = M$ if and only if M is projective semisimple,
- (5) If M' is a left R-module and $f: M \longrightarrow M'$ is a homomorphism, then $f(Soc_{\delta}(M)) \subseteq Soc_{\delta}(f(M)).$

Proof. (1) Let $x \in \delta(M) \cap Soc(M)$. Then $Rx \ll_{\delta} M$ and Rx is semisimple. So there exist $m \in \mathbb{Z}^+$ and simple submodules S_i of M for every $i \in \{1, 2, \ldots, m\}$ such that $Rx = S_1 \oplus S_2 \oplus \cdots \oplus S_m$ by [10, Proposition 3.3]. Since $Rx \ll_{\delta} M$, it follows from Lemma 2.1 (2) that each $S_i \ll_{\delta} M$. Thus $x \in Rx \subseteq Soc_{\delta}(M)$. The converse is clear by the definition of $Soc_{\delta}(M)$.

(2) Clearly, $Soc_{\delta}(M)$ is semisimple. Then the proof follows from Lemma 2.2.

(3) Since semisimple modules have zero radical, it is clear.

(4) Let $Soc_{\delta}(M) = M$. By (1), we get M is semisimple and $\delta(M) = M$. Hence M is projective semisimple by Corollary 2.3. The converse is clear.

(5) Let $f: M \longrightarrow M'$ be a homomorphism of modules and $x \in f(Soc_{\delta}(M))$. Then x = f(m) for some element $m \in Soc_{\delta}(M)$. Applying (1), we obtain that $m \in Soc(M) \cap \delta(M)$. Therefore $x = f(m) \in f(Rm) \subseteq Soc(f(M))$ by [13, 21.2 (1)] and $x = f(m) \in f(Rm) \subseteq \delta(f(M))$ by Lemma 2.1 (3). It means that $x \in Soc(f(M)) \cap \delta(f(M))$. Again applying (1), we have $x \in Soc_{\delta}(f(M))$. \Box

Let M be a module and S be a simple submodule of M. Then $S \ll M$ or we have the decomposition $M = S \oplus K$ for some submodule K of M. Using this fact we have:

Corollary 3.2. Let M be a module and let S be a simple submodule of M. Then $S \ll_{\delta} M$ if and only if S is projective or small in M.

Proof. Let $S \ll_{\delta} M$. Suppose that S is not small in M. Then we get $M = S \oplus K$. By the assumption, S is projective as desired. The converse is clear. \Box

Let M be a module and U, V be submodules of M. Following [6], V is called *ss-supplement of* U in M if M = U + V and $U \cap V \subseteq Soc_s(V)$. For any left module X, we have $Soc_s(X) \subseteq Soc_\delta(X)$ and so it is natural to introduce another notion that we called δ_{ss} -supplement. A submodule V of M is called δ_{ss} -supplement of U in M if M = U + V and $U \cap V \subseteq Soc_\delta(V)$. Under given definitions we obtain the following diagram:

Modifying of [6, Lemma 3] we characterize δ_{ss} -supplement submodules of a module M. Note that we shall freely use the next lemma without reference in this paper.

Lemma 3.3. Let M be a module and U, V be submodules of M. Then the following statements are equivalent.

- (1) V is a δ_{ss} -supplement of U in M,
- (2) M = U + V, $U \cap V \subseteq \delta(V)$ and $U \cap V$ is semisimple,
- (3) M = U + V, $U \cap V \ll_{\delta} V$ and $U \cap V$ is semisimple.

Proof. Using Proposition 3.1, we have clearly $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$. (2) \Rightarrow (3) It follows from Lemma 2.2.

Proposition 3.4. Let M be a module and U be a maximal submodule of M. If U has a δ_{ss} -supplement V in M, then V is strongly δ -local or projective semisimple

Proof. Let V be a δ_{ss} -supplement of U in M. Then M = U + V, $U \cap V \subseteq \delta(V)$ and $U \cap V$ is semisimple. Note that $\frac{M}{U} \cong \frac{V}{U \cap V}$ is simple and thus $U \cap V$ is a maximal submodule of V. Hence $\delta(V) = U \cap V$ or $\delta(V) = V$. If $\delta(V) = U \cap V$, then $\delta(V) \subseteq Soc(V)$. Therefore V is strongly δ -local. Now suppose that $\delta(V) = V$. By [11, Lemma 2.22], we get that V is projective semisimple. \Box

Proposition 3.5. Let M be module and let $V \subseteq M$ be a δ_{ss} -supplement in M.

- (1) If L is a submodule of V, then $\frac{V}{L}$ is a δ_{ss} -supplement in $\frac{M}{L}$,
- (2) Whenever $V \subseteq K \subseteq M$, V is also a δ_{ss} -supplement in K,
- (3) $Soc_{\delta}(V) = V \cap Soc_{\delta}(M).$

Proof. Since V is a δ_{ss} -supplement in M, then there exists a submodule U of M such that $M = U + V, U \cap V \ll_{\delta} V$ and $U \cap V$ is semisimple.

(1) Since M = U + V, we have $\frac{M}{L} = (\frac{U+L}{L}) + \frac{V}{L}$. Let $\pi : V \longrightarrow \frac{V}{L}$ be the canonical homomorphism. Then by Lemma 2.1 (2), we obtain that $\pi(U \cap V) = \frac{(U \cap V) + L}{L} = \frac{(U+L) \cap V}{L} = (\frac{U+L}{L}) \cap \frac{V}{L} \ll_{\delta} \frac{V}{L}$. It follows from [5, 8.1.5 (2)] that $\pi(U \cap V) = (\frac{U+L}{L}) \cap \frac{V}{L}$ is semisimple. It means that $\frac{V}{L}$ is a δ_{ss} -supplement of $\frac{U+L}{L}$ in $\frac{M}{L}$.

(2) By the modular law, we have $K = K \cap M = K \cap (U+V) = U \cap K + V$. Therefore $(U \cap K) \cap V = U \cap V \subseteq Soc_{\delta}(V)$.

(3) It follows from Proposition 3.1, [4, Corollary 2.5] and [13, 21.2 (2)] that we can write $V \cap Soc_{\delta}(M) = V \cap [Soc(M) \cap \delta(M)] = [V \cap Soc(M)] \cap [V \cap \delta(M)] = Soc(V) \cap \delta(V) = Soc_{\delta}(V).$

Lemma 3.6. Let M be a module and let K be a direct summand of M. Then a submodule $V \subseteq K$ is a δ_{ss} -supplement in K if and only if it is a δ_{ss} -supplement in M.

Proof. (\Longrightarrow) By the hypothesis, we have $M = K \oplus L$ where $L \subseteq M$. Since V is a δ_{ss} -supplement in K, then there exists a submodule U of K such that $K = U + V, U \cap V \ll \delta V$ and $U \cap V$ is semisimple. So $M = (U + V) \oplus L = (U \oplus L) + V$. It can be seen that $(U \oplus L) \cap V = U \cap V$. Hence V is a δ_{ss} -supplement of $U \oplus L$ in M.

 (\Leftarrow) By Proposition 3.5 (2).

Theorem 3.7. Let M be a module. Then M is a δ_{ss} -supplement in every extension if and only if it is a δ_{ss} -supplement in E(M), where E(M) is the injective hull of M.

Proof. One direction is clear. Conversely, let $M \subseteq N$. Then we have $E(M) \subseteq E(N)$. So by [10, Theorem 2.15], $E(N) = E(M) \oplus L$ for some submodule L of E(N). Since M is a δ_{ss} -supplement in E(M), it follows from Lemma 3.6 that it is a δ_{ss} -supplement in E(N). Hence M is a δ_{ss} -supplement in N by Proposition 3.5 (2).

Proposition 3.8. Let M be a module with $Soc_{\delta}(M) = 0$. Then M is a δ_{ss} -supplement in E(M) if and only if it is injective.

Proof. Let M be a δ_{ss} -supplement in E(M). Then there exists a submodule N of E(M) such that E(M) = N + M and $N \cap M \subseteq Soc_{\delta}(M)$. Since $Soc_{\delta}(M) = 0$, we obtain that $N \cap M = 0$. Thus $E(M) = N \oplus M$. It means that M is injective. The converse is clear. \Box

Let R be a commutative domain and M be an R-module. We denote by Tor(M) the set of all elements m of M for which there exists a non-zero element r of R such that rm = 0, i.e. $Ann(m) \neq 0$. Then Tor(M), which is a submodule of M, called the torsion submodule of M. If M = Tor(M), then M is called a torsion module and M is called torsion-free provided Tor(M) = 0.

Let R be a commutative domain which is not field and M be an R-module. Suppose that S is a simple submodule of M. Let m be a non-zero element of S. Then Rm = S and so we can write $S \cong \frac{R}{Ann(m)}$. Since R is not field, $Ann(m) \neq 0$. Therefore, for some non-zero element $r \in R$, we get rm = 0. So $m \in Tor(M)$. It means that $Soc(M) \subseteq Tor(M)$. Using this fact and Proposition 3.8, we obtain that the next result. By Remark 1.2, we get that δ_{ss} -supplements are ss-supplements in this case.

Corollary 3.9. Let R be a commutative domain which is not field and M be a torsion-free R-module. Then M is a ss-supplement in E(M) if and only if it is injective.

Proof. Since M is torsion-free, we get that $Soc_{\delta}(M) = 0$. It follows from Proposition 3.8 that the proof is clear.

Let R be a commutative domain which is not field. R is said to be one dimensional if, for every non-zero ideal I of R, $\frac{R}{T}$ is an artinian ring.

Corollary 3.10. Let R be a one dimensional domain and M be a torsion-free R-module. Then the following statements are equivalent:

- (1) M is a ss-supplement in E(M),
- (2) M is injective,
- (3) M is radical, i.e. M has no maximal submodules.

Proof. By Corollary 3.9 and [2, Lemma 4.4]

Proposition 3.11. Let R be a Dedekind domain and M be an R-module. Then M is a ss-supplement in E(M) if and only if it is injective.

Proof. Let M be a ss-supplement of some submodule N in E(M). For every non-zero element $r \in R$, we can write E(M) = rE(M) = rN + rM = N + rM and so, by the minimality of M, we obtain that M is divisible. By [2, Lemma 4.4], M is injective.

A module M is said to be π -projective if whenever U and V are submodules of M such that M = U + V, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1 - f)(M) \subseteq V$. Hollow (local) modules and self-projective modules are π -projective.

Lemma 3.12. Let M be a π -projective module and U, V be submodules of M. If U and V are mutual δ -supplements in M, then they are mutual δ_{ss} -supplements in M.

Proof. It follows from [7, Lemma 2.15].

Recall from [13, 41.16 (1)] that every supplement submodule of a π -projective supplemented module is a direct summand. Analogous to that we have:

Corollary 3.13. Let M be a π -projective and δ -supplemented module. Then every δ -supplement in M is δ_{ss} -supplement in M.

Proof. Let V be a δ -supplement of some submodule U in M. Then M = U + Vand $U \cap V \ll_{\delta} V$. Since M is π -projective and δ -supplemented, it follows from [1, Theorem 4.4] that it is amply δ -supplemented. So V has a δ_{ss} -supplement $U' \subseteq U$ in M. Therefore V and U' are mutual δ -supplements in M. Thus by Lemma 3.12, V is a δ_{ss} -supplement in M.

Theorem 3.14. The following conditions are equivalent for a module M with non-zero $\delta(M)$.

- (1) every cyclic submodule of M is a δ_{ss} -supplement in M,
- (2) every cyclic submodule of M is a δ -supplement in M,
- (3) M is projective semisimple.

Proof. $(3) \Longrightarrow (1)$ and $(1) \Longrightarrow (2)$ are clear.

(2) \Longrightarrow (3) Let $0 \neq m \in \delta(M)$. By (2), there exists a submodule U of M such that M = U + Rm and $U \cap Rm \ll_{\delta} Rm$. Since $Rm \ll_{\delta} M$, we can write $M = X \oplus Rm$, where X is a projective semisimple submodule of U. Since Rm is a δ -supplement in M, it follows from [4, Corollary 2.5] that $\delta(Rm) = Rm \cap \delta(M) = Rm$. By Lemma 2.1 (2), we get $\delta(Rm) = Rm \ll_{\delta} Rm$ and so Rm is projective semisimple. Hence $M = X \oplus Rm$ is projective semisimple. \Box

Theorem 3.15. The following conditions are equivalent for a module M with zero $\delta(M)$.

(1) every (resp., cyclic) submodule of M is a δ_{ss} -supplement in M,

- (2) every (resp., cyclic) submodule of M is a δ -supplement in M,
- (3) M is (resp., regular) semisimple.

Proof. $(3) \Longrightarrow (1)$ and $(1) \Longrightarrow (2)$ are clear.

(2) \implies (3) Since $\delta(M) = 0$, every (cyclic) submodule of M is a direct summand of M and so M is (regular) semisimple.

It is well known that a ring R is semisimple if and only if, for every left R-module, every submodule is direct summad (see [13, 20.7]). Using Theorem 3.14 and Theorem 3.15, we generalize this fact.

Corollary 3.16. Let R be a ring. Then R is semisimple if and only if, for every left R-module M, every submodule of M is δ_{ss} -supplement in M.

4 δ_{ss} -Supplemented Modules

In this section, we define the concept of δ_{ss} -supplemented modules and obtain the basic properties of such modules.

Let M be a module. We say that M a δ_{ss} -supplemented module if every submodule U of M has a δ_{ss} -supplement V in M, and M amply δ_{ss} -supplemented if in case M = U + V implies that U has a δ_{ss} -supplement $V' \subseteq V$. It is clear that every (amply) ss-supplemented module is (amply) δ_{ss} -supplemented, and (amply) δ_{ss} -supplemented modules are (amply) δ_{ss} -supplemented.

Now we begin by giving some examples of module to separate (amply) sssupplemented, (amply) δ_{ss} -supplemented and (amply) δ -supplemented. Firstly we need the following facts:

Lemma 4.1. Every strongly δ -local module is δ_{ss} -supplemented.

Proof. Let M be a strongly δ -local module and U be any submodule of M. If $U \subseteq \delta(M)$, then U is semisimple since $\delta(M)$ is semisimple. By Lemma 2.2, we get $U \ll_{\delta} M$. Thus M is the δ_{ss} -supplement of U in M. Let $U \nsubseteq \delta(M)$. Since $\delta(M)$ is maximal, we can write the equality $M = U + \delta(M)$. Then there exists a projective semisimple submodule V of $\delta(M)$ such that $M = U \oplus V$ because $\delta(M) \ll_{\delta} M$. Hence M is δ_{ss} -supplemented. \Box

 π -projective supplemented modules are amply supplemented. Similarly, we show that π -projective δ_{ss} -supplemented modules are amply δ_{ss} -supplemented. The proof is virtually the same that of [13, 41.15], but we give it for completeness.

Proposition 4.2. Let M be a π -projective and δ_{ss} -supplemented module. Then M is amply δ_{ss} -supplemented. Proof. Let U and V be submodules of M such that M = U + V. Since M is π -projective, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1-f)(M) \subseteq V$. Note that $(1-f)(U) \subseteq U$. Let V' be a δ_{ss} -supplement of U in M. Then $M = f(M) + (1-f)(M) = f(M) + (1-f)(U+V') \subseteq U + (1-f)(V') \subseteq M$, so that M = U + (1-f)(V'). Here (1-f)(V') is a submodule of V. Let $y \in U \cap (1-f)(V')$. Then, $y \in U$ and y = (1-f)(x) = x - f(x) for some $x \in V'$. We have $x = y + f(x) \in U$ so that $y \in (1-f)(U \cap V')$. Since $U \cap V' \ll_{\delta} V'$, we get $U \cap (1-f)(V') = (1-f)(U \cap V') \ll_{\delta} (1-f)(V')$ by [15, Lemma 1.3 (2)]. Also $U \cap (1-f)(V') = (1-f)(U \cap V')$ is semisimple. Thus, (1-f)(V') is a δ_{ss} -supplement of U in M. Therefore M is amply δ_{ss} -supplemented.

Combining Proposition 4.2 and Lemma 4.1, we obtain the next result:

Corollary 4.3. A projective strongly δ -local module is amply δ_{ss} -supplemented.

Example 4.4. (1) Consider the non-noetherian commutative ring S which is the direct product $\prod_{i\geq 1}^{\infty} F_i$, where $F_i = \mathbb{Z}_2$. Suppose that R is the subring of S generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_S . Let $M =_R R$. Then M is a regular module which is not semisimple. Therefore Soc(M) is maximal. By [15, Example 4.1], we have $Soc(M) = \delta(M) \ll_{\delta} M$. This means that M is strongly δ local. Since M is projective, it follows from Lemma 4.1 and Corollary 4.3 that M is amply δ_{ss} -supplemented. On the other hand, it is not (amply) ss-supplemented because Rad(M) = 0.

(2) Let M be the local \mathbb{Z} -module \mathbb{Z}_{p^k} , for p is any prime integer and $k \geq 3$. It is clearly that M is amply δ -supplemented. Since $Soc_{\delta}(\mathbb{Z}_{p^k}) = Soc(\mathbb{Z}_{p^k}) \cong \mathbb{Z}_p$ and $\delta(M) = Rad(M) = p\mathbb{Z}_{p^k}$, M is not (amply) δ_{ss} -supplemented.

It is well known that artinian modules are (amply) δ -supplemented. Example 4.4 (2) also shows that in general artinian modules need not to be δ_{ss} -supplemented. Now, we have the following implications the classes of modules:

artinian \implies supplemented $\implies \delta$ -supplemented

and

Now we study on the various properties of δ_{ss} -supplemented modules.

Proposition 4.5. Let M be a δ -local module. Then M is δ_{ss} -supplemented if and only if it is strongly δ -local.

Proof. (\Longrightarrow) Since M is δ -local, it suffices to show that $\delta(M) \subseteq Soc(M)$. Let $m \in \delta(M)$. Then $Rm \ll_{\delta} M$. Since M is δ_{ss} -supplemented, Rm has a δ_{ss} -supplement V in M. Therefore M = Rm + V and $Rm \cap V$ is semisimple. So we can write $M = S \oplus V$, where S is a projective semisimple submodule of Rm. Applying the modular law, we have $Rm = Rm \cap M = Rm \cap (S \oplus V) = S \oplus (Rm \cap V)$. So Rm is semisimple as the sum of two semisimple submodules. Hence $Rm \subseteq Soc(M)$. It means that $\delta(M) \subseteq Soc(M)$.

 (\Leftarrow) By Lemma 4.1.

Proposition 4.6. Let M be a δ -supplemented module with $\delta(M) \subseteq Soc(M)$. Then M is δ_{ss} -supplemented.

Proof. Let $U \subseteq M$. Since M is δ -supplemented, there exists a submodule V of M such that M = U + V and $U \cap V \ll_{\delta} V$. Then $U \cap V \subseteq \delta(V) \subseteq \delta(M)$. By the hypothesis, $U \cap V \subseteq Soc(M)$. Therefore V is a δ_{ss} -supplement of U in M. It means that M is δ_{ss} -supplemented.

Proposition 4.7. Let M be a δ_{ss} -supplemented module. Then $\frac{M}{Soc_{\delta}(M)}$ is semisimple.

Proof. Let $Soc_{\delta}(M) \subseteq U \subseteq M$. Since M is δ_{ss} -supplemented, there exists a submodule V of M such that M = U + V and $U \cap V \subseteq Soc_{\delta}(V)$. Then $U \cap V \subseteq Soc_{\delta}(M)$ and so the sum $\frac{M}{Soc_{\delta}(M)} = \frac{U}{Soc_{\delta}(M)} + \frac{V+Soc_{\delta}(M)}{Soc_{\delta}(M)}$ is direct sum. Hence $\frac{M}{Soc_{\delta}(M)}$ is semisimple. \Box

In order to prove that every finite sum of δ_{ss} -supplemented modules is δ_{ss} -supplemented, we use the following standard lemma (see, [13, 41.2]).

Lemma 4.8. Let M be a module and U be a submodule of M. Suppose that a submodule M_1 of M is δ_{ss} -supplemented. If $M_1 + U$ has a δ_{ss} -supplement in M, U has also a δ_{ss} -supplement in M.

Proof. Suppose that X is a δ_{ss} -supplement of $M_1 + U$ in M and Y is a δ_{ss} -supplement of $(X+U) \cap M_1$ in M_1 . So $M = M_1+U+X$, $M_1 = (X+U) \cap M_1+Y$, $(M_1+U) \cap Y \ll_{\delta} Y$, $(X+U) \cap Y \ll_{\delta} Y$, $(M_1+U) \cap Y$ and $(X+U) \cap Y$ is semisimple. Then $M = (X+U) \cap M_1 + Y + U + X = U + X + Y$ and by [11, Lemma 2.1 (2)] $U \cap (X+Y) \subseteq X \cap (U+Y) + Y \cap (U+X) \subseteq X \cap (U+M_1) + Y \cap (U+X) \ll_{\delta} X + Y$. Moreover, $X \cap (Y+U)$ is semisimple as a submodule of semisimple module $X \cap (Y+U)$. Note that $Y \cap [(X+U) \cap M_1] = Y \cap (X+U)$

is semisimple. It follows from [5, 8.1.5] that $(X+Y) \cap U$ is semisimple. Hence X+Y is a δ_{ss} -supplement of U in M.

Proposition 4.9. The class of δ_{ss} -supplemented modules is closed under finite sums.

Proof. Let M_i , i = 1, 2, ..., n be any finite collection of δ_{ss} -supplemented modules and let $M = M_1 + M_2 + \cdots + M_n$. To prove that M is δ_{ss} -supplemented by induction on n, it is sufficient to prove this in the case, where n = 2. Hence, suppose n = 2. Let M_1 , M_2 be any submodules of a module M such that $M = M_1 + M_2$. If M_1 and M_2 are δ_{ss} -supplemented, M is δ_{ss} -supplemented. Let U be any submodule of M. The trivial submodule 0 is δ_{ss} -supplement of $M = M_1 + M_2 + U$ in M. Since M_1 is δ_{ss} -supplemented, $M_2 + U$ has a δ_{ss} -supplement in M by Lemma 4.8. Again applying Lemma 4.8, we have that U has a δ_{ss} -supplement in M. This shows that M is δ_{ss} -supplemented. \Box

A submodule U of a module M is said to be *cofinite* if $\frac{M}{U}$ is finitely generated (see [2]). Note that maximal submodules of M are cofinite.

Proposition 4.10. Let M be a module. Then the following conditions are equivalent.

- (1) M is the sum of strongly δ -local or projective semisimple submodules,
- (2) M is coatomic and every cofinite submodule of M has a δ_{ss} -supplement in M,
- (3) M is coatomic and every maximal submodule of M has a δ_{ss} -supplement in M.

Proof. (1) \implies (2) Let $M = \sum_{i \in I} M_i$, where I is some index set and each M_i is strongly δ -local submodules or projective semisimple submodules. Put $N = \bigoplus_{i \in I} M_i$. It follows from Theorem 2.9 that N is coatomic. Consider the epimorphism $\psi : N \longrightarrow M$ via $\psi((m_i)_{i \in I}) = \sum_{i \in I} m_i$ for all $(m_i)_{i \in I} \in N$. By [16, Lemma 1.5 (a)], we get M is coatomic.

Let U be any cofinite submodule of M. Then $\frac{M}{U}$ is finitely generated and so there exists a finite subset $\Lambda \subseteq I$ such that $M = U + \sum_{i \in \Lambda} M_i$. By Lemma 4.1 and Proposition 4.9, we obtain that $\sum_{i \in \Lambda} M_i$ is δ_{ss} -supplemented as the finite sum of δ_{ss} -supplemented submodules. Hence U has a δ_{ss} -supplement in M according to Lemma 4.8.

 $(2) \Longrightarrow (3)$ Clear.

 $(3) \Longrightarrow (1)$ Let X be the sum of all strongly δ -local submodules or semisimple projective submodules. Suppose that $X \neq M$. Since M is coatomic, there exists a submodule U of M such that $X \subseteq U \subset M$. By the assumption, U

has a δ_{ss} -supplement, say V, in M. It follows from Proposition 3.4 that V is projective simple or V is strongly δ -local. Then $V \subseteq X \subseteq U$. This is a contradiction.

It is clear that every submodule of a finitely generated module is cofinite. Using this fact and Proposition 4.10, we obtain the following result:

Corollary 4.11. Let M be a finitely generated module. Then the following conditions are equivalent:

- (1) $M = \sum_{i=1}^{n} M_i$, where each M_i is strongly δ -local or projective semisimple,
- (2) M is δ_{ss} -supplemented,
- (3) every maximal submodule of M has a δ_{ss} -supplement in M.

Theorem 4.12. Let M be a module. Then M is δ_{ss} -supplemented if and only if every submodule U of M containing Soc(M) has a δ_{ss} -supplement in M.

Proof. One direction is clear. Conversely, let $U \subseteq M$. By the assumption, Soc(M) + U has a δ_{ss} -supplement V in M. Since Soc(M) is δ_{ss} -supplemented, it follows from Lemma 4.8 that U has a δ_{ss} -supplement in M. Hence M is δ_{ss} -supplemented.

It is trivial to show that:

Corollary 4.13. Let R be a ring and M be an R-module.

(1) Soc(M) has a δ_{ss} -supplement in M if and only if Soc(M) has a δ -supplement in M.

(2) If R is a commutative domain, then Soc(M) has a δ_{ss} -supplement in M if and only if Soc(M) has a supplement in M.

Proposition 4.14. If M is a (amply) δ_{ss} -supplemented module, then every factor module of M is (amply) δ_{ss} -supplemented.

Proof. Let M be a δ_{ss} -supplemented module and $\frac{M}{L}$ be a factor module of M. By the assumption, for any submodule U of M which contains L, there exists a submodule V of M such that M = U + V, $U \cap V \ll_{\delta} V$ and $U \cap V$ is semisimple. Let $\pi : M \longrightarrow \frac{M}{L}$ be the canonical projection. Then we have that $\frac{M}{L} = \frac{U}{L} + \frac{V+L}{L}$ and $\frac{U}{L} \cap \frac{V+L}{L} = \frac{(U \cap V)+L}{L} = \pi(U \cap V) \ll_{\delta} \pi(V) = \frac{V+L}{L}$ by Lemma 2.1 (2). Since $U \cap V$ is semisimple, it follows from [5, 8.1.5 (2)] that $\pi(U \cap V) = \frac{(U \cap V)+L}{L}$ is semisimple. That is, $\frac{V+L}{L}$ is a δ_{ss} -supplement of $\frac{U}{L}$ in $\frac{M}{L}$, as required.

It can be proved similarly that if M is amply δ_{ss} -supplemented, then $\frac{M}{L}$ is amply δ_{ss} -supplemented for every submodule L of M.

Lemma 4.15. Let M be a δ_{ss} -supplemented module and $N \ll_{\delta} M$. Then $N \subseteq Soc_{\delta}(M)$.

Proof. Let K be a δ_{ss} -supplement of N in M. Then M = N + K, $N \cap K \ll_{\delta} K$ and $N \cap K$ is semisimple. Since $N \ll_{\delta} M$, there exists a semisimple projective submodule N' of N such that $M = N' \oplus K$. By the modular law, we obtain that $N = N' \oplus (N \cap K)$. Hence N is semisimple. \Box

Corollary 4.16. Let M be a coatomic module and M be a δ_{ss} -supplemented module. Then $\operatorname{Rad}(M) \subseteq \delta(M) \subseteq \operatorname{Soc}(M)$.

The following result is a generalization of Corollary 2.3.

Proposition 4.17. Let M be a δ_{ss} -supplemented module and $\delta(M) = M$. Then M is projective semisimple.

Proof. Let m be any element of M. It follows from $\delta(M) = M$ that $Rm \ll_{\delta} M$. By the assumption and Lemma 4.15, we have $Rm \subseteq Soc_{\delta}(M) \subseteq Soc(M)$ and so $m \in Soc(M)$. Therefore M is semisimple. Hence it is projective semisimple by Corollary 2.3.

Note that a hollow module is either radical or local. Observe from Proposition 4.17 that a hollow-radical module is not δ_{ss} -supplemented.

Proposition 4.18. Let M be a hollow module. If M is δ_{ss} -supplemented, then it is strongly local.

Proof. Let M be a δ_{ss} -supplemented module. If $\delta(M) = M$, it follows from Proposition 4.17 that M is projective semisimple and so M is projective simple because M is hollow. Assume that $\delta(M) \neq M$. Since $Rad(M) \subseteq \delta(M)$ and M is hollow, M is local. Therefore we have $Rad(M) = \delta(M)$ is maximal and small in M. It follows from Lemma 4.15 that $\delta(M) \subseteq Soc_{\delta}(M) \subseteq Soc(M)$. It means that M is strongly local.

In the following next theorem we give the structure of a δ_{ss} -supplemented module M with δ -small $\delta(M)$ in terms of δ -supplemented modules.

Theorem 4.19. Let M be a module and $\delta(M) \ll_{\delta} M$. Then the following statements are equivalent:

- (1) M is δ_{ss} -supplemented,
- (2) M is δ -supplemented and $\delta(M)$ has a δ_{ss} -supplement in M,
- (3) M is δ -supplemented and $\delta(M) \subseteq Soc(M)$.

Proof. Clearly we have $(1) \Longrightarrow (2)$, and $(2) \Longrightarrow (3)$ follows from Lemma 4.15. (3) $\Longrightarrow (1)$ By Proposition 4.6.

5 Rings whose modules are δ_{ss} -supplemented

It follows from [15] that a projective module P is called a *projective* δ -cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $Ker(f) \ll_{\delta} P$. A ring R is called δ -semiperfect if every simple R-module has a projective δ -cover, and it is called δ -perfect if every left R-module has a projective δ cover. It is proven in [7, Theorem 3.3 and Theorem 3.4] that a ring R is δ -perfect (respectively, δ -semiperfect) if and only if every left (respectively, finitely generated) R-module is δ -supplemented. Now we characterize the rings the property that every left R-module is (amply) δ_{ss} -supplemented.

Lemma 5.1. Let M be a module. If every submodule of M is δ_{ss} -supplemented, then M is amply δ_{ss} -supplemented.

Proof. Let U and V be submodules of M such that M = U+V. Since V is δ_{ss} -supplemented, there exists a submodule V' of V such that $V = (U \cap V) + V'$, $U \cap V' \ll_{\delta} V'$ and $U \cap V'$ is semisimple. Note that $M = U + V = U + (U \cap V) + V' = U + V'$. It means that U has ample δ_{ss} -supplements in M. Hence M is amply δ_{ss} -supplemented.

A module M is called *locally projective* in case whenever $g: N \longrightarrow K$ is an epimorphism and $f: M \longrightarrow K$ is a homomorphism then for every finitely generated submodule M_0 of M there exists a homomorphism $h: M \longrightarrow N$ such that $gh|_{M_0} = f|_{M_0}$. Every projective module is locally projective. Also, a finitely generated locally projective module is projective.

Proposition 5.2. Let M be a locally projective module and $N \subseteq Soc(M)$. Then $N \ll_{\delta} M$.

Proof. Let M = N + K for some submodule K of M. Since N is semisimple, we can write $N = (N \cap K) \oplus X$ where X is a semisimple submodule of N. Therefore the sum M = X + K is direct sum. Since being locally projective is inherited by direct summands, it follows that every direct summand of X is locally projective and so every simple submodule of X is projective. Therefore X is projective as the direct sum projective simple submodules. Hence $N \ll_{\delta} M$.

Theorem 5.3. Let R be a ring. Then the following statements are equivalent.

- (1) $_{R}R$ is δ_{ss} -supplemented,
- (2) R is a δ -semiperfect ring and $\delta(R) = Soc(_RR)$,
- (3) $\frac{R}{Soc(_RR)}$ is semisimple and idempotents lift to $Soc(_RR)$,

- (4) every projective left R-module is δ_{ss} -supplemented,
- (5) every left R-module is (amply) δ_{ss} -supplemented,
- (6) for every left R-module M every maximal submodule has δ_{ss} -supplement in M,
- (7) every left maximal ideal of R has a δ_{ss} -supplement in R.

Proof. (1) \implies (2) By the hypothesis, $_RR$ is δ -supplemented and so it follows from [7, Theorem 3.3] that R is a δ -semiperfect ring. Since $_RR$ is coatomic, it follows from Lemma 2.1 (5) that $\delta(R)$ is δ -small in $_RR$. Applying Theorem 4.19, we get that $\delta(R) \subseteq Soc(_RR)$. On the other hand, by Proposition 5.2, $Soc(_RR) \subseteq \delta(R)$ and so we obtain that the equality $\delta(R) = Soc(_RR)$.

 $(2) \Longrightarrow (3)$ By [15, Theorem 3.6].

(3) \Longrightarrow (4) Let *P* be a projective left *R*-module. Since $\frac{R}{Soc(_RR)}$ is artinian semisimple, it follows from [15, Corollary 1.7] that $\delta(R) = Soc(_RR)$ and so $\delta(P) = \delta(R)P = Soc(_RR)P \subseteq Soc(P)$ by [15, Theorem 1.8]. According to Proposition 4.6, it suffices to prove that *P* is δ -supplemented. Since semisimple rings are perfect, it follows from assumption and [15, Theorem 3.8] that *R* is a δ -perfect ring. By [7, Theorem 3.4], we obtain that *P* is δ -supplemented.

(4) \implies (5) Let M be a left R-module. Since every left R-module is a homomorphic image of a free left R-module, it follows from Proposition 4.14 that every submodule of M is δ_{ss} -supplemented. By Lemma 5.1, it is amply δ_{ss} -supplemented.

(5)
$$\Longrightarrow$$
 (6) and (6) \Longrightarrow (7) Clear.
(7) \Longrightarrow (1) By Corollary 4.11.

Hence we have the following strict containments of classes of rings:

{rings in [6, Theorem 41]} \subset {rings in Theorem 5.3} \subset { δ -perfect rings}

Examples for showing these implications are not invertible can be found [15, Example 4.1 and Example 4.3]. So we say that a ring R is left δ_{ss} -perfect if the equal conditions satisfy in the above theorem. Right δ_{ss} -perfect rings are defined similarly. R is said to be δ_{ss} -perfect if it is both a right and a left δ_{ss} -perfect.

Proposition 5.4. Let R be a left δ_{ss} -perfect ring. Then Rad(R) is semisimple. In particular, $(Rad(R))^2 = 0$.

Proof. Since R is a left δ_{ss} -perfect ring, it follows from Theorem 5.3 that $Rad(R) \subseteq \delta(R) = Soc(RR)$. It means that Rad(R) is semisimple. By [13, 21.12 (4)], we obtain that $(Rad(R))^2 = 0$.

A ring R is called a *left max ring* if every left R-module has a maximal submodule. It is well known that a ring R is left max if and only if every non-zero left R-module is coatomic.

Proposition 5.5. Let R be a left δ_{ss} -perfect ring. Then it is a left max ring.

Proof. Let M be a radical module, that is, $\operatorname{Rad}(M) = M$. Then $\delta(M) = M$. Since R is a left δ_{ss} -perfect ring, by Theorem 5.3, $\frac{R}{Soc(_RR)} = \frac{R}{\delta(R)}$ is a semisimple ring. By [15, Theorem 1.8], we obtain that $\delta(M) = \delta(R)M = Soc(_RR)M \subseteq Soc(M)$. Then M = Soc(M). Since semisimple modules are zero radical, we get M = Rad(M) = 0. This means that R is a left max ring.

Now we characterize the left δ_{ss} -perfect rings via a different kind of projective δ -covers. Let M be a module and $f: P \longrightarrow M$ be an epimorphism. We call the module P a δ_{ss} -cover of M if ker(f) is semisimple and δ -small in P, and call a δ_{ss} -cover P a projective δ_{ss} -cover of M in case P is projective.

Theorem 5.6. Let M be a projective module. Then the following conditions are equivalent.

- (1) M is δ_{ss} -supplemented,
- (2) every submodule of M has a δ_{ss} -supplement that is a direct summand of M,
- (3) for any submodule N of M, M has the decomposition $M = N' \oplus K$ such that $N' \subseteq N$ and $N \cap K \subseteq Soc_{\delta}(M)$,
- (4) every factor module of M has a projective δ_{ss} -cover.

Proof. (1) \Longrightarrow (4) Let U be a submodule of M. It follows that U has a δ_{ss} -supplement, say V, in M. Since M = U + V, the homomorphism $g: V \longrightarrow \frac{M}{U}$ via g(v) = v + U is an epimorphism. Let $\pi : M \longrightarrow \frac{M}{U}$ be the canonical projection. Since M is projective, there exists a homomorphism $f: M \longrightarrow V$ such that $gf = \pi$. Then it can be seen that M = U + f(M). Applying the modular law, we get $V = U \cap V + f(M)$. Therefore we can write $V = S \oplus f(M)$ for some projective semisimple submodule S of V because $U \cap V \ll_{\delta} V$. Since $U \cap f(M) \subseteq U \cap V \ll_{\delta} V$, then $U \cap f(M) \ll_{\delta} V$ by Lemma 2.1 (2). It follows from [15, Lemma 1.3 (3)] that $U \cap f(M) \ll_{\delta} f(M)$ since f(M) is a direct summand of V. This means that f(M) is a δ_{ss} -supplement of U in M. Since M is projective and δ_{ss} -supplemented, by Proposition 4.2, it is amply δ_{ss} -supplemented and so f(M) has a δ_{ss} -supplement $U' \subseteq U$ in M. Therefore f(M) and U' are mutual δ_{ss} -supplements in M. Using [7, Lemma 2.15], we obtain that f(M) is projective.

Now we consider the epimorphism $\varphi : f(M) \longrightarrow \frac{M}{U}$ via $\varphi(x) = x + U$ for all $x \in f(M)$. Since M = U + f(M), we obtain that $ker(\varphi) = U \cap f(M)$ is semisimple and δ -small in f(M). Hence f(M) is a projective δ_{ss} -cover of $\frac{M}{U}$ as desired.

 $\begin{array}{l} (4) \Longrightarrow (3) \text{ It follows from [15, Lemma 2.4].} \\ (3) \Longrightarrow (2) \text{ and } (2) \Longrightarrow (1) \text{ Clear.} \end{array}$

The next result is crucial.

Corollary 5.7. The following conditions are equivalent for a ring R.

- (1) R is a left δ_{ss} -perfect ring,
- (2) every left R-module has a projective δ_{ss} -cover,
- (3) every semisimple left R-module has a projective δ_{ss} -cover,
- (4) every simple left R-module has a projective δ_{ss} -cover.

Proof. (1) \Longrightarrow (2) Let M be a left R-module. Then there exist a projective module P and an epimorphism $\Psi: P \longrightarrow M$. By the assumption and Theorem 5.3, we get that P is δ_{ss} -supplemented. It follows from Theorem 5.6 that M has a projective δ_{ss} -cover as a factor module of P.

- $(2) \Longrightarrow (3)$ and $(3) \Longrightarrow (4)$ are clear.
- $(4) \Longrightarrow (1)$ It follows from [15, Lemma 2.4] and Theorem 5.3.

Proposition 5.8. A commutative δ_{ss} -perfect domain is field.

Proof. Let R be a commutative δ_{ss} -perfect domain and $a \in R$. It follows that R is a local ring. If $a \in R \setminus Rad(R)$, we have that Ra = R and so a is an invertible element of R. Suppose that $a \in Rad(R)$. By Proposition 5.4, $a^2 \in (Rad(R))^2 = 0$. Therefore a = 0 since R is a domain. Thus R is field. \Box

Let R be a ring. Next we will give a necessary and sufficient condition for the δ_{ss} -perfect ring R to be ss-supplemented as a left R-module. Recall from Lomp [8] that a module M is said to be *semilocal* if $\frac{M}{Rad(M)}$ is semisimple, and a ring R is said to be *semilocal* if it is semilocal as a left (right) module over itself. It is shown in [8, Teorem 3.5] that a ring R is semilocal if and only if every left R-module is semilocal.

It is shown in [4, Proposition 4.2] that a projective semilocal, δ -supplemented module M with small radical is supplemented. From this fact we see that the condition "small radical" is necessary for M to be a supplemented. However, we show by the following proposition that a projective semilocal, δ_{ss} supplemented module is *ss*-supplemented without necessity of this condition.

Proposition 5.9. Let M be a projective module. If M is semilocal and δ_{ss} -supplemented, then it is ss-supplemented.

Proof. Let M be a semilocal and δ_{ss} -supplemented module. Then $Soc(M) = X \oplus Soc_s(M)$, where $X \subseteq Soc(M)$. Since M is semilocal, we can write M = X + Y and $X \cap Y \subseteq Rad(M)$ for some submodule Y of M. Now $X \cap Y \subseteq X \cap Rad(M) = [X \cap Soc(M)] \cap Rad(M) = X \cap [Soc(M) \cap Rad(M)] = X \cap Soc_s(M) = 0$. Therefore $M = X \oplus Y$ and $Soc(Y) \subseteq Rad(Y) = Rad(M)$. Then Y is projective as a direct summand of the projective module M. By the proof of [4, Proposition 4.2], we have $Rad(Y) = \delta(Y)$. Since M is δ_{ss} -supplemented, it follows from Proposition 4.14 that Y is δ_{ss} -supplemented.

Let U be a submodule of Y. By Theorem 5.6, there exists a direct summand V of Y such that Y = U + V and $U \cap V \subseteq Soc_{\delta}(V)$. Then $U \cap V \subseteq \delta(V) \subseteq \delta(Y) = Rad(Y)$ and hence $U \cap V$ is small in Y. It follows from [13, 19.3 (5)] that $U \cap V \ll V$. This means that Y is ss-supplemented. Hence $M = X \oplus Y$ is ss-supplemented by [6, Corollary 3.13].

For a ring R, let $\mathfrak{X}(R) = \frac{Soc(_RR)}{Soc_s(_RR)}$ as in [4].

Corollary 5.10. Let R be a ring. Then the following statements are equivalent:

- (1) $_{R}R$ is ss-supplemented,
- (2) R is left δ_{ss} -perfect and semilocal,
- (3) R is left δ_{ss} -perfect and $\mathfrak{X}(R)$ is finitely generated.

Proof. (1) \iff (2) By Proposition 5.9. (2) \iff (3) It follows from [4, Lemma 4.1].

Observe from Corollary 5.10 that if a left δ_{ss} -perfect ring is left noetherian, then it is a left artinian ring.

References

- Abdioglu, C. and Şahinkaya, S. "Some results on δ-semiperfect rings and δ-supplemented modules", Kyungpook Math. J., vol. 55(2), pp. 289-300, 2015.
- [2] Alizade, R., Bilhan, G. and Smith, P.F. "Modules whose maximal submodules have supplements", *Communications in Algebra*, vol. 29(6), pp. 2389-2405, 1999.

- [3] Anderson, F.W., "Rings and Categories of Modules", Graduate texts in mathematics (Springer-Verlag), 1991.
- [4] Büyükaşık, E. and Lomp, C. "When δ-semiperfect rings are semiperfect", *Turk. J. Math.*, vol. 34, pp. 317-324, 2010.
- [5] Kasch, F., "Modules and rings", Academic Press Inc., 1982.
- [6] Kaynar, E., Çalışıcı, H. and Türkmen, E. "SS-supplemented modules", Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69 (1), pp. 473-485, 2020.
- [7] Koşan, M.T. "δ-lifting and δ-supplemented modules", Alg. Colloq., vol. 14(1), pp. 53-60, 2007.
- [8] Lomp, C. "On semilocal modules and rings", Communications in Algebra, vol. 27(4), pp. 1921-1935, 1999.
- Mohamed, S.H., and Müller, B.J. "Continuous and discrete modules", London Math. Soc. LNS 147 Cambridge University, pp. 190, Cambridge, 1990.
- [10] Sharpe, D. W., and Vamos, P., Injective modules, *Cambridge University Press*, Cambridge, 1972.
- [11] Tribak, R. "Finitely generated δ -supplemented modules are amply δ -supplemented", *Bull. Aust. Math. Soc.*, vol. 86, pp. 430-439, 2012.
- [12] Tribak, R. "When finitely generated δ-supplemented modules are supplemented", Algebra Colloquium, vol. 22(1), pp. 119-130, 2015.
- [13] Wisbauer, R., "Foundations of module and ring theory", Gordon and Breach, 1991.
- [14] Zhou, D.X. and Zhang, X.R. "Small-essential submodules and morita duality", *Southeast Asian Bulletin of Mathematics*, vol. 35, pp. 1051-1062, 2011.
- [15] Zhou, Y. "Generalizations of perfect, semiperfect and semiregular rings", Algebra Colloquium, vol. 7(3), pp. 305-318, 2000.
- [16] Zöschinger, H., "Komplementierte moduln über Dedekindringen", J. Algebra, Vol. 29, pp.42–56, 1974.

Burcu Nişancı Türkmen, Amasya University, Faculty of Art and Science, Department of Mathematics, Ipekkoy, 05100, Amasya, Turkey. Email: burcunisancie@hotmail.com Ergül Türkmen, Amasya University, Faculty of Art and Science, Department of Mathematics, Ipekkoy, 05100, Amasya, Turkey. Email: ergulturkmen@hotmail.com